Выберите нужное направление или школу
Полная стоимость
80 000 ₽/курс
Минимальный платеж в месяц
3 833 ₽/мес
Длительность
Длительность:
5 месяцев
Дата начала
Дата начала:
10 ОктябряKarpov.courses — это школа Data Science для любого уровня подготовки. Команда создаёт онлайн-курсы по аналитике данных, машинному обучению, которые помогут вам начать карьеру в IT или углубить уже имеющиеся знания. Преподаватели — опытные специалисты из ведущих российских компаний, таких как ВКонтакте, Яндекс и Mail.ru. Школа делает курсы честно и отвечает за их содержание. Репутация на рынке — это то, благодаря чему Karpov.courses выбирают сотни студентов.
Аналитик данных занимается сбором, обработкой, анализом и интерпретацией больших объемов данных. Он использует различные методы и инструменты, чтобы извлечь ценную информацию из данных и помочь принимать более обоснованные решения в бизнесе. Аналитик данных также должен уметь визуализировать данные и представлять их в понятном виде для широкой аудитории.
В среднем в России в месяц публикуется около 10 800 вакансий.
5 месяцев обучения
11 содержательных модулей
1 итоговый проект
Кликбейтный заголоовок, но другой я не придумала)
Мне действительно очень понравился курс, это был очень хороший толчок вверх, я узнала огромное количество новой инфы, которую я сейчас и применяю, хотя пока больше в исследовательской деятельности(выйграла 2 хакатона и участвую в научных конференциях, связанных с ии),так как я сейчас учусь в универе и совмещать пока не успеваю, но это только пока)). Подача информации, ее актуальность и структурированность - это все 10 из 10. Правда у меня уже был бэкграунд в плане высшей математики и года полтора опыта в программировании на питоне, так что материал мне дался не сильно прям сложно, к тому же я еще и много читала сама, что тоже важно, так как перекладывать все на курс не очень эффективно; но это было интересно, не нудно, я делала домашку без задней мысли, по типу: "когда же это все закончится", - а это я вам скажу, что очень важно.
Но что вот прям хочется сказать, так это огромное спасибо преподавателям, которые все это придумали и создали, это все очень круто, и у меня есть огромное желание и дальше развиваться в этой сфере, чего я искренне желаю каждому.
На данный момент я работаю в сфере телекоммуникаций на должности руководителя направления, мы занимаемся планированием сетей связи. До этого училась в техническом ВУЗе, так что математическая база изначально у меня была.
Мне захотелось сменить сферу деятельности, поэтому стала смотреть, что предлагается на рынке онлайн-обучения. Выбирала между многими школами и остановилась на karpov.соurses, потому что вы специализируетесь на Data Science и меня привлекла такая узкая направленность. Мне кажется, DS — очень крутое направление. Это то, что нас уже окружает: от рекомендательных сетей и банковского скоринга до нейросетей, которые генерируют изображения и убирают шум с аудиодорожек. Я уверена, что в будущем в очень многих сферах эти технологии будут использоваться и спектр применения очень широк уже сейчас.
Курс мне в целом понравился, он хорошо структурирован, очень много материала охвачено: от очистки данных и визуализации до Machine Learning и Deep Learning. Задания в блоках были сложными, но преодолимыми, я многому научилась методом проб и ошибок. Мне субъективно кажется, что при общении в DS-коммьюнити я всегда понимаю, о чём идёт речь в разговорах на ML-темы. Иногда я вижу решение вопроса, который ребята задают, например, в чатах, потому что мы это разбирали в курсе.
Мои самые любимые блоки — это Python и «Основы машинного обучения». В них было очень много интересных нюансов, например, в блоке Python — работа с Git, Airflow и SQL; в модуле по МО были подробно разобраны все основные алгоритмы и много фишек по обработке признаков. Очень классно, что был обзор Deep Learning: можно теперь применять Трансформеры в соревнованиях.
Я пока не начала искать работу в сфере DS, но в ближайшее время собираюсь это сделать. Также планирую воспользоваться помощью рекрутеров karpov.соurses. Для меня этот курс был вводным в новую специальность, и этим летом я планирую поступать в магистратуру ИТМО по направлению «Искусственный интеллект», потому что хочу дальше развиваться в этой сфере.
Отдельное преимущество курса — это коммьюнити. Во время учебы я подружилась с однокурсницей, и теперь мы регулярно общаемся и встречаемся на дата-ужинах, которые устраивает Open Data Science.
Спасибо за такой качественный контент! Хотелось бы больше поддержки во время выполнения финального проекта, но в целом курс получился очень крутой.
Хочу дать совет тем, кто начинает: в учёбе главное — привычка. Мне помогло чёткое следование расписанию занятий. Так легче было садиться за выполнение заданий и проще дойти до конца. Я училась 6 дней в неделю минимум по часу и старалась придерживаться этого расписания, даже если отставала из-за отпуска и больничного.
Ответить
0 комментариев
До этого момента имел дело с ML только в теории и немного практики, после этого курса понял что такое настоящий промышленный ML и что он из себя представляет. Я Вам обещаю вы научитесь и ML, DL , статистики и Python.
Приэтом хочу отметить довольно сложный курс, особенно под конец появляется много дэдлайнов и приходилось много действителньо заниматься и решать.
Остался полностью доволен, рекомендую Всем кто хочет вкатиться в эту область!
Ответить
0 комментариев
Ответить
0 комментариев